人文地理
 
  联系我们 | 在线留言 | 注册 | 遗忘密码?
  读者在线:
  用户名   密码   登录
2025年5月16日 星期五  首页 期刊介绍 编委会 作者中心 审稿中心 在线期刊 | 期刊订阅 | 下载中心 | 广告合作 友情链接 | 联系我们
人文地理  2019, Vol. 34 Issue (4): 106-114    DOI: 10.13959/j.issn.1003-2398.2019.04.013
经济 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于POI大数据的老工业区房价影响因素空间分异与实证
薛冰1,2, 肖骁1,2, 李京忠2,3, 谢潇1,2, 任婉侠1,2, 逯承鹏1,2, 姜璐1,2,4
1. 中国科学院 污染生态与环境工程重点实验室(沈阳应用生态研究所), 沈阳 110016;
2. 辽宁省环境计算与可持续发展重点实验室, 沈阳 110016;
3. 许昌学院 城乡规划与园林学院, 许昌 461000;
4. 兰州大学 资源环境学院, 兰州 730000
POI-BASED ANALYSIS ON THE AFFECTING FACTORS OF PROPERTY PRICES' SPATIAL DISTRIBUTION IN THE TRADITIONAL INDUSTRIAL AREA
XUE Bing1,2, XIAO Xiao1,2, LI Jing-zhong2,3, XIE Xiao1,2, REN Wan-xia1,2, LU Cheng-peng1,2, JIANG Lu1,2,4
1. Key Lab of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
2. Key Lab for Environmental Computation and Sustainability of Liaoning Province, Shenyang 110016, China;
3. College of Urban Planning and Architecture, Xuchang University, Xuchang 461000, China;
4. College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China

全文: PDF (5264 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 在采集沈阳市铁西区2017年住宅、工厂、地铁站等兴趣点数据的基础上,将工厂距离、房龄以及住宅密度三个变量与传统变量共同参与构建地理加权回归模型,揭示房价影响因素的空间异质性及形成机制。结果表明:在全区范围内,房龄、住宅密度、公共交通、公共配套设施等对房价有显著的提升作用,而工业企业等对房价有一定的抑制作用;新老城区对比来看,所筛选的影响因素与房价的相关性具有显著的空间非平稳性,具体表现在工厂距离、公交密度、商场距离等因素在新老城区的正负影响差异,以及住宅密度、地铁站距离等单向影响因子回归系数的强度渐变;从研究方法来看,基于POI与GWR集成分析,可以有效克服房价实时更新慢、准确度低及数据清洗困难等传统难题,从而为构建和发展新数据环境下的经济地理研究提供参考。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛冰
肖骁
李京忠
谢潇
任婉侠
逯承鹏
姜璐
关键词 人地系统房价GWR模型空间异质性老工业区    
Abstract:Based on the residential POI data of the Tiexi District in Shenyang, a geographical weighted regression (GWR) model was constructed by adding three variables that could affect the traditional industrial area's property prices as well as the traditional variables, the three added variables include house age, residential density and the distance between residences and industries. The results show that:house age, residential density, public transport, public facilities and so on have a significant effect on property prices, while industrial enterprises and other factors have a certain effect on price inhibition. The relativities between all kinds of influence factors and residential prices have remarkable spatial non-stationary, showing that the intensity gradient of the regression coefficient of one-way influencing factors such as residential density, subway station distance, as well as the difference between the positive and negative effects of factors such as factory distance, bus density, shopping mall distance in the traditional and new urban areas.
Key wordshuman-natural system    property prices    GWR model    spatial heterogeneity    traditional industrial area   
收稿日期: 2018-04-10     
PACS: K902  
基金资助:国家自然科学基金项目(41471116,41701142,41701466)
通讯作者: 李京忠(1978-),男,山东临沂人,副教授,博士,主要研究方向为环境计算与城市生态。E-mail:zhong_lij@163.com。     E-mail: zhong_lij@163.com
作者简介: 薛冰(1982-),男,江苏连云港人,研究员,博士,主要研究方向为老工业区人地关系。E-mail:xuebing@iae.ac.cn。
引用本文:   
薛冰, 肖骁, 李京忠, 谢潇, 任婉侠, 逯承鹏, 姜璐. 基于POI大数据的老工业区房价影响因素空间分异与实证[J]. 人文地理, 2019, 34(4): 106-114. XUE Bing, XIAO Xiao, LI Jing-zhong, XIE Xiao, REN Wan-xia, LU Cheng-peng, JIANG Lu. POI-BASED ANALYSIS ON THE AFFECTING FACTORS OF PROPERTY PRICES' SPATIAL DISTRIBUTION IN THE TRADITIONAL INDUSTRIAL AREA. HUMAN GEOGRAPHY, 2019, 34(4): 106-114.
链接本文:  
http://rwdl.xisu.edu.cn/CN/10.13959/j.issn.1003-2398.2019.04.013      或     http://rwdl.xisu.edu.cn/CN/Y2019/V34/I4/106
2011 © 人文地理编辑部 版权所有
技术支持: 北京玛格泰克科技发展有限公司